Freight Rolling Stock digitalisation at EU level The intelligent train

carlo m borghini Shift2Rail Executive Director

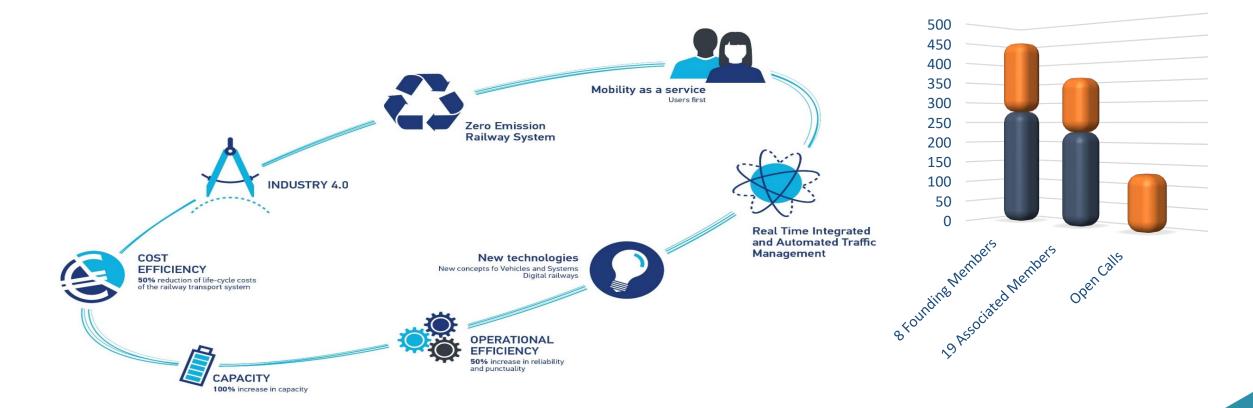
SUSTAINABLE DEVELOPMENT GOALS

RAILWAY

Aging

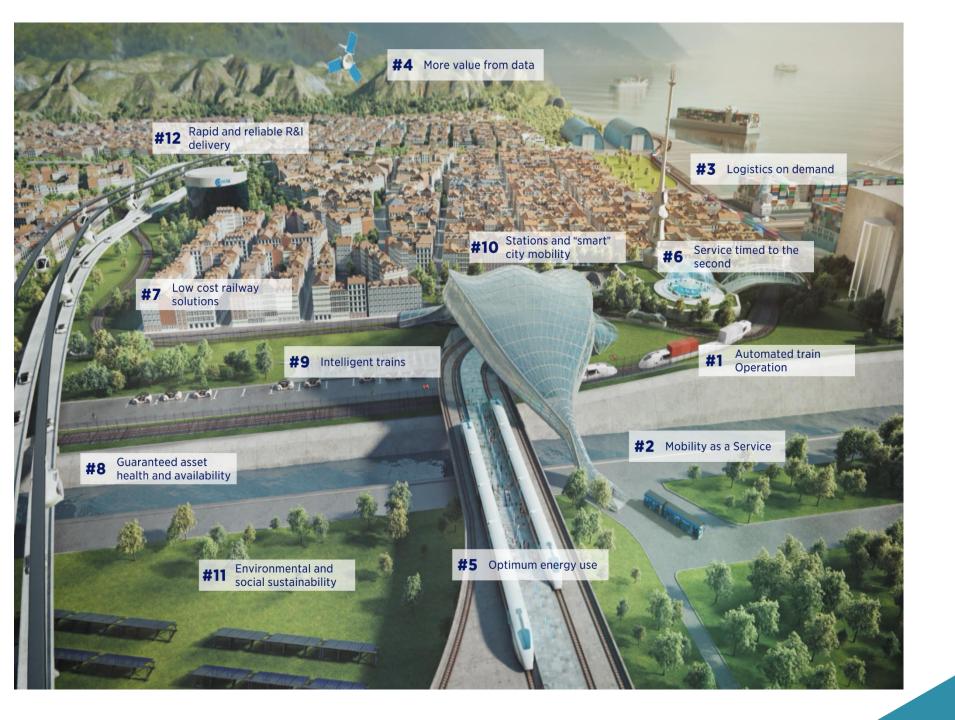
People, Infrastructure, Assets
Staff, ...

ClimateChange


Game changer

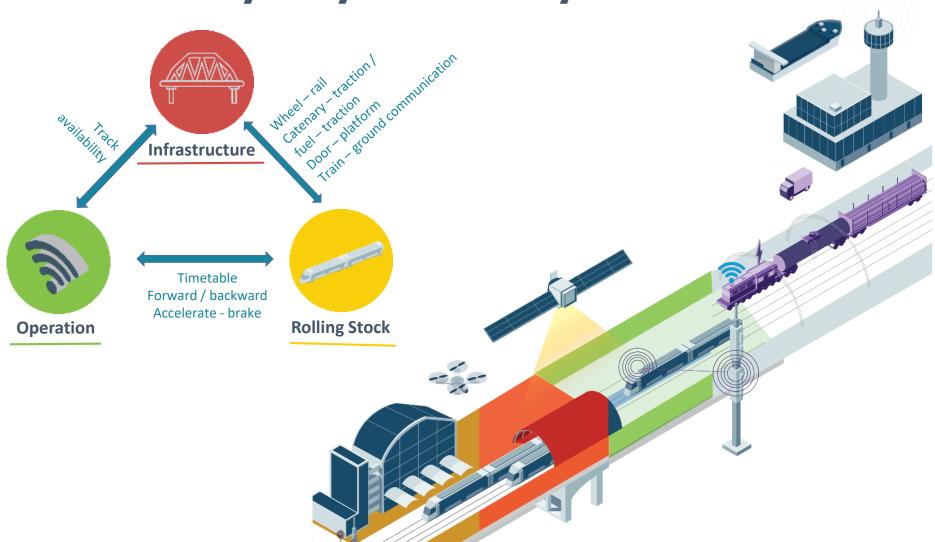
Technology

Opportunity & risk



S2R VISION

To deliver through railway research and innovation the capabilities to bring about the most sustainable, cost-efficient, high-performing, time driven, digital and competitive, customer-driven transport mode for Europe


INNOVATION CAPABILITIES

USER FIRST

IP1 Cost-efficient and Reliable Trains, including high-capacity trains and high speed trains

IP2 Advanced Traffic Management and Control System

IP3 Cost-efficient, Sustainable and Reliable High Capacity Infrastructure

IP4 IT Solutions for Attractive Railways Services

IP5 Technology for Sustainable and Attractive European Rail Freight

CCA Cross Cutting Activities

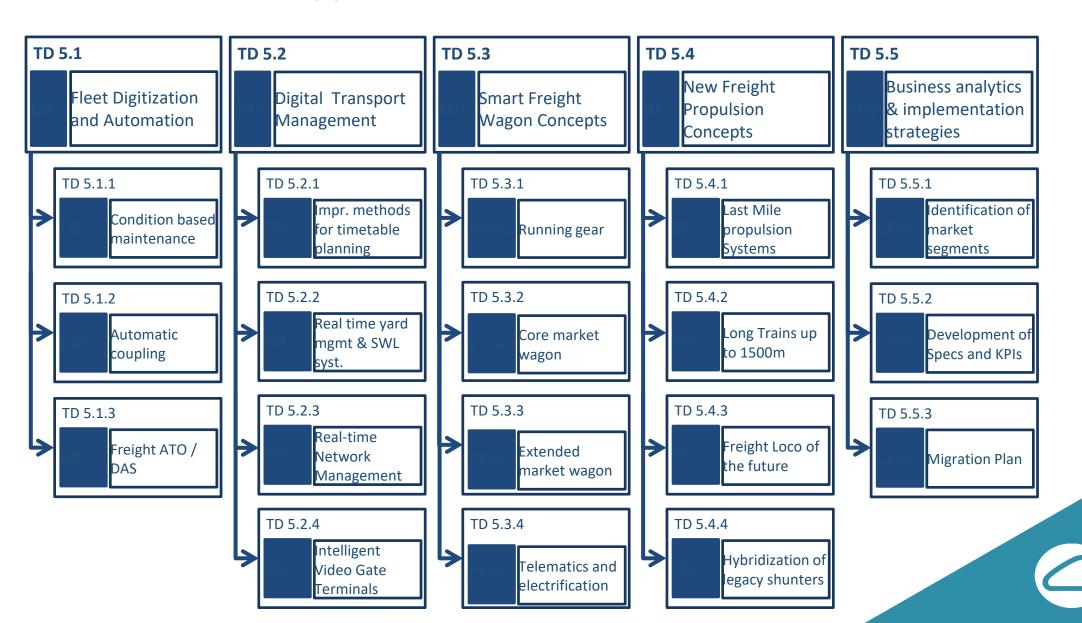
Railway System Architecture

- ✓ Innovation: evolutionary, by steps or disruptive
- ✓ Time to market: moving from R&I to deployment => system approach to decrease fragmentation
- √ "Do not reinvent the wheel": Open System Interface (or interconnection) model
- ✓ Innovation Skills and Competences : still the same needs in the Digital Railway?

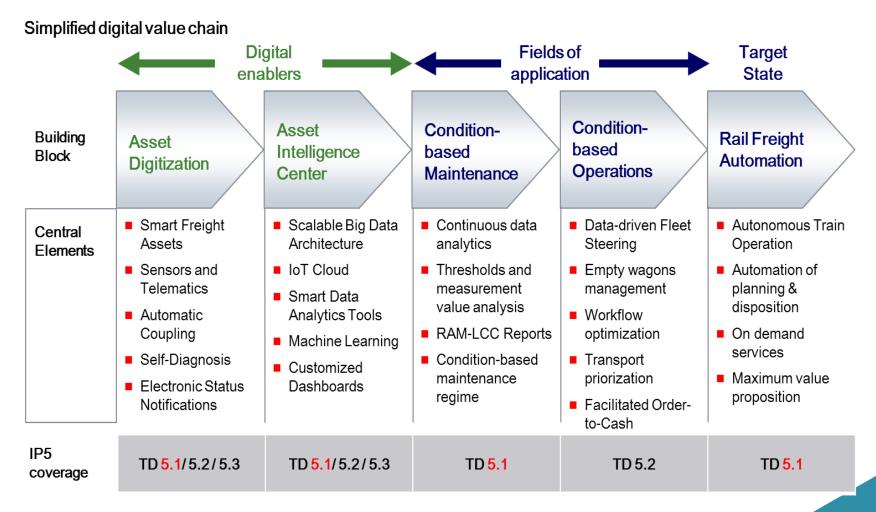
THE FUTURE RAIL SYSTEM: TRAINS MAXIMIZING THE SYSTEM PERFORMANCE BY A COMBINATION OF DISTRIBUTED INTELLIGENCE AND SUPERVISION

- ✓ Enablers: digital technologies, automation, artificial intelligence, data, cloud and supercomputing, connectivity, satellite, but also new regulatory concepts and framework, traction, braking systems, etc....
- ✓ Deployment: from zero on site testing through integrated testing to revenue services testing, large real time demos, transition models

A System of Systems' Architecture: Innovative Solutions for Railway Next Gen Systems


S2R will deliver with the Sector, under DG MOVE and together with ERA, a Comprehensive **Systems of Systems' Architecture**, meaning a structure of components, their relationships, and the principles and guidelines governing their design functional evolution over times:

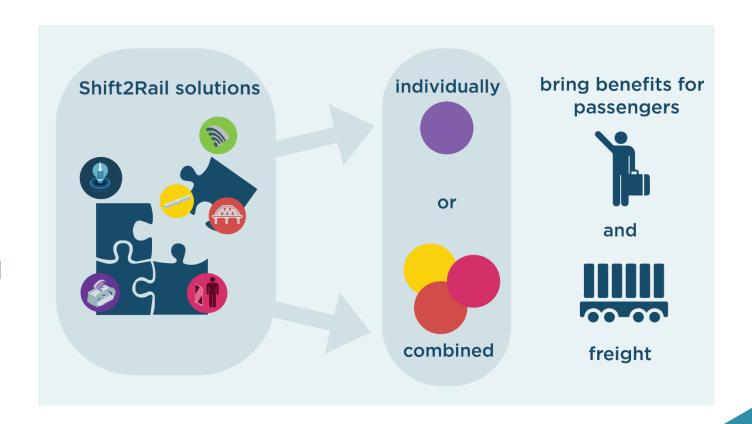
- Integration of the S2R Innovative Solutions for the ERTMS Game Changers (ATO GoA2, GoA3/4, Adaptable Communication System, Moving Block, Train Positioning) together with sectorial initiatives (RCA, OCORA) for an Open System Interface (or interconnection) model
- Integration of S2R interoperable solutions as Intelligent Mobility Management (enlarged TMS), next gen TCMS, smart connected object controllers, condition based maintenance for all kind of assets, etc
- Aligning all ongoing modelling initiatives (RTM, EULynx, IFC, RailML, TAP/TAF;
 SensorML etc.) in terms of principles and digital data exchange format with the S2R solution on a EU shared Conceptual Data Model



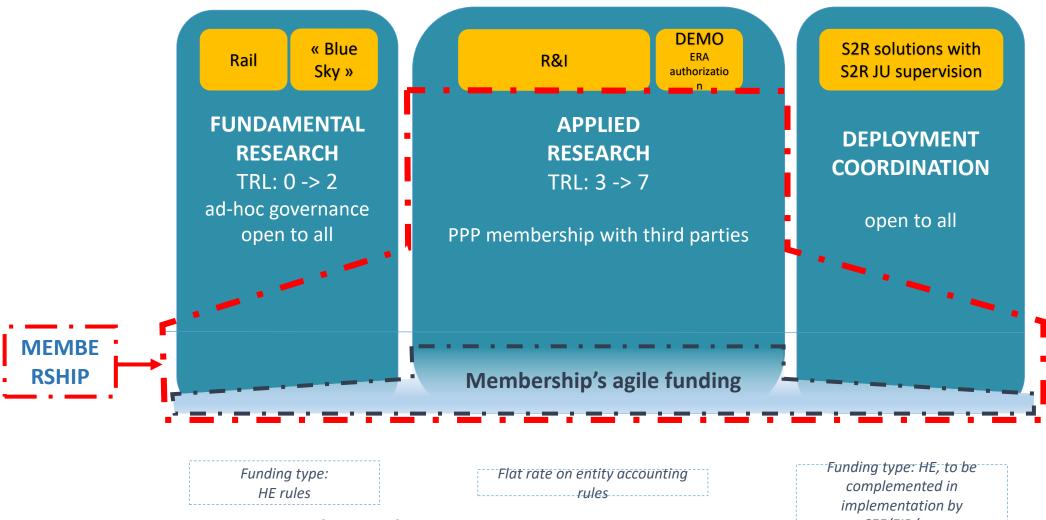
IP5 better focused approach

IP5 interaction between TDs

IP5 planning

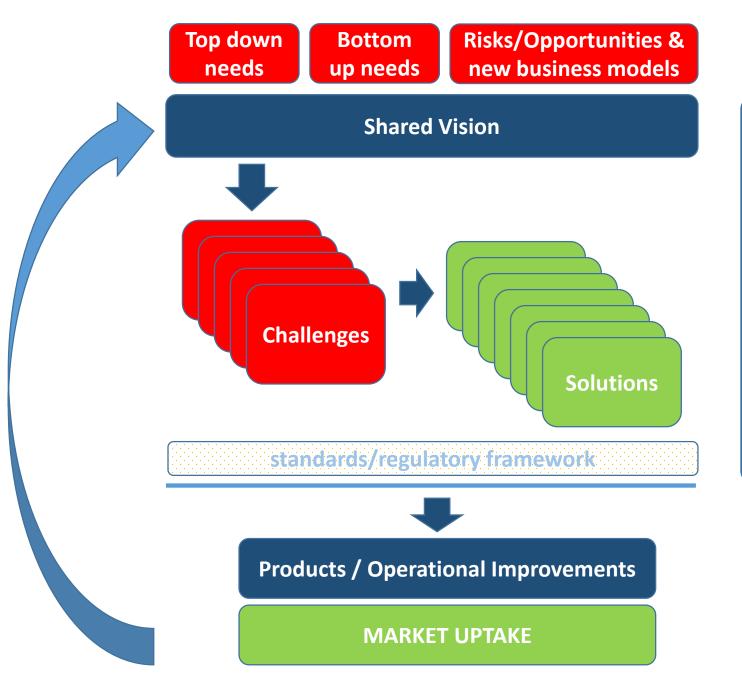

TDs	TASKS	TRL	2016				2017				2018				2019				2020				2021				2022			
	Fleet Digitalisation and																													
TD 5.1	Automation		Q1	Q2 (23	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	High level specification																													
	definition, feasibility																													
	analysis and preliminary													-																
5.1.1	testing CBM and AC	n/a												-																
	Conceptual / architecture																													
5.1.2	design CBM and AC	3																												
	ATO over ETCS - GOA2																	\line{\pi}												
5.1.3	freight specification	3																*												
	Detailed design,																													
	implementation and unitary																							ouoooo						
5.1.4	testing CBM and AC	4			-																									
	GOA2 Pilot Line freight																													
5.1.5	demonstration	6																~												
	Integration of components																													
5.1.6	CBM and AC	5																						www						
	C-DAS/ ATO interface																													^
5.1.7	assessment	3																												\limits
	ATO over ETCS - GOA4																													
5.1.8	freight simulation	3																												
	Demonstration activities																													
5.1.9	CBM and AC	6										-		wasaaaaa																

milestone quick win ongoing activities planned activities



S2R JU Catalogue of solutions

- What R&I investments generate as innovative solutions for market uptake
- To explain successful results in term of possible products/solutions with a clear timetable
- To show Benefits for "customers": final users, operators, infrastructure managers and/or suppliers
- To highlight the advantages of integrating the demonstrators into market solutions
- To deliver the Innovation Capabilities
- 28 October publication



No participation barriers between R&I&D areas

TRL 7 Demos included in Applied Research, Live Large Scale Demos in Deployment Coordination

FOUNDING MEMBERS

BOMBARDIER

SIEMENS

THALES

ASSOCIATED MEMBERS

amadeus

Virtual Vehicle Austria consortium+ (VVAC+)

European Rail Operating community Consortium (EUROC)

Swi'Tracken consortium

Smart DeMain (SDM) consortium

U. PORTO

getzner engineering a quiet future

Slovenske železnice

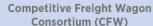
Z Institut für Zulunftsstudien und Technologiebewiertung

EURO

voestalpine

BM

TCDD



Smart Rail Control

(SmartRaCon) consortium

ConTraffic

ceit